











Nenninhalt: 850 I
Einsatzbedingungen:
Wellrohr-WT: zul. Betriebsüberdruck: 6 bar
zul. Betriebstemp.: 95 °C
Speicher: zul. Betriebsüberdruck: 3 bar
zul. Betriebstemp.: 95 °C
Oberflächenschutz:
Behälterinnenfläche: roh
Behälteraußenfläche: Rostschutzgrundierung
Prüfüberdruck (Rohzustand): Speicher: 3,9 bar
Prüfmedium: Wasser 10-50 °C
Innengewinde nach DIN ISO 228/T.1
Außengewinde nach DIN ISO 7/T.1 (R) bzw. DIN ISO 228/T.1 (G)
Werksabnahme

| Typ     | Istinhalt     | Wellrohr -WT |               |
|---------|---------------|--------------|---------------|
| Тур     | Wellrohr - WT | Speicher     | Heizfläche/qm |
| CPSH850 | 29            | 813          | 5,4           |

| d        | 1591        |           | 16           | .10.2017                       | Eb.     | Halbzeug/Werkstoff Typenbezeichnung - Kunde: CPSH850 |                                                     | Nichtangegebene<br>Grenzabw.  DIN 28005/ DIN EN ISO 13920c | Blat<br>A2      | tfor.           |  |
|----------|-------------|-----------|--------------|--------------------------------|---------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|-----------------|-----------------|--|
| _        |             |           |              |                                |         |                                                      |                                                     | BIN EN 100 100200                                          |                 |                 |  |
| b<br>b   | 1036<br>652 |           |              | 26.06.2014 Eb.<br>28.09.12 Ebe |         | Ebeling                                              | Benennung<br>COSMO Pufferspeicher<br>HYGPS-850/ø790 |                                                            | Maßstab<br>1:10 | Blatt<br>AnzNr. |  |
| а        | 623         |           | 08.08.12     |                                | Ebeling | HYGPS-850/ø790                                       | Masse                                               | 1                                                          |                 |                 |  |
| ΑZ       | Mitte       | eilung    | Datum        |                                | Name    |                                                      |                                                     | ca. 163 kg                                                 | 1               | 1               |  |
| •        |             | Datum Nan |              | Nam                            | е       | Dokumenten-Nr. Version:                              |                                                     |                                                            |                 |                 |  |
| Bearb.   |             | 03.02.20  | 12 Ebeling   |                                |         | BSP.HYG.11.085.079.COS                               |                                                     |                                                            |                 |                 |  |
| Gepr.    |             | 03.02.20  | .2012 Kießwe |                                | tter    |                                                      |                                                     | (L)ST                                                      | Λ               |                 |  |
| Technol  |             |           |              |                                |         |                                                      |                                                     |                                                            | GMBH            |                 |  |
|          |             |           |              |                                |         | rs.für Status:                                       |                                                     | _                                                          |                 | AMBH            |  |
| $\alpha$ | 1           | l         |              | 1                              |         | 1                                                    | I                                                   |                                                            |                 |                 |  |